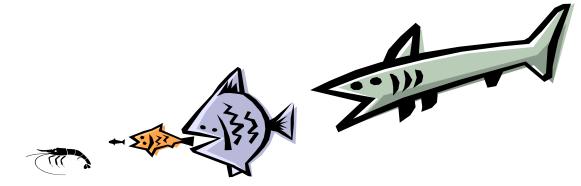
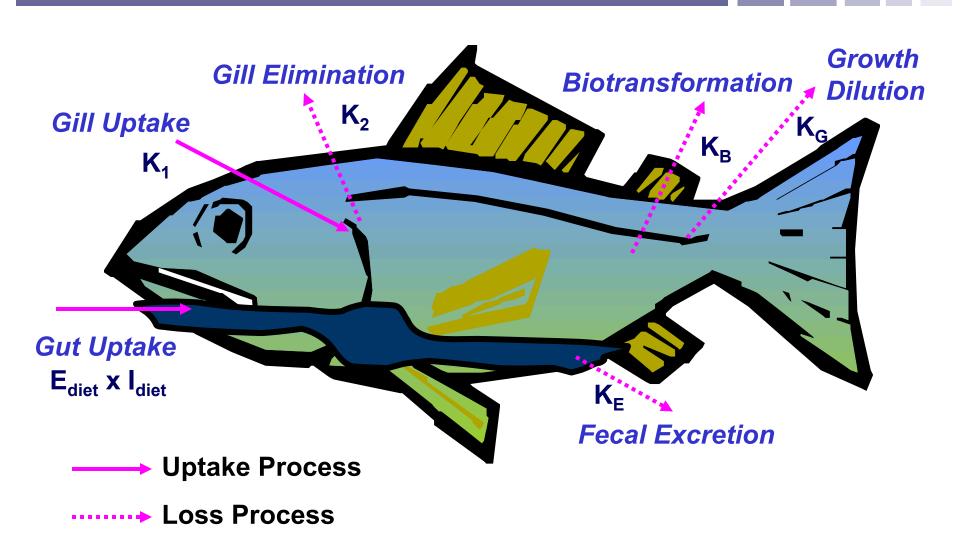
Bioavailability Considerations in Aquatic Bioaccumulation Assessment of Hydrocarbons


Bioaccessibility & Bioavailability Workshop Berkeley, California

September 29, 2004

T. Parkerton, D. Letinski, E. Febbo, C. Dzamba, R. Blattenberger, M. Connelly

Introduction


- Bioavailability:
 - Extent to which human & ecological receptors are exposed
 - In the aquatic environment ... bioaccumulation in the foodchain often dictates contaminant exposure to upper trophic level biota
 - + Bioaccumulation provides a measure of bioavailability

- Bioaccumulation potential in fish .. key regulatory concern:
 - PBT prioritization initiatives, e.g. categorization of Canadian DSL
 - Regional / site-specific risk assessment
 - + Bioaccumulation often assessed using very simplistic models

$$Log BCF = a + b Log K_{ow}$$

Bioaccumulation Processes in Fish

Uptake Processes

- For neutral organics with Log K_{ow} > 3
 - ▶Gill uptake controlled by:
 - +Gill ventillation (depends on fish size)
 - +Complexation to dissolved or particulate organic carbon
 - Reduces bioavailability
 - Bioavailable fraction = $1/[1+0.35K_{ow}{POC}+0.035K_{ow}{DOC}]$
 - Gut uptake depends on:
 - + Ingestion rate of food
 - + Assimilation efficiency of chemical from diet
 - Empirically related to Log K_{ow}
 - Role of metabolism in gut ignored in default models

Loss Processes

Gill Elimination:

$$K_2$$
 (1/day) = K_1 / (L_{fish} K_{ow})

• Gut Excretion:

$$K_E$$
 (1/day) = 0.2 $E_{diet} I_{diet} L_{diet} / L_{fish}$

Growth-Dilution:

$$K_G (1/day) = 0.01 W^{-0.2}$$

Biotransformation: Usually Ignored

$$K_B (1/day) = 0$$

 L_{fish} = Lipid fraction in fish

L_{diet} = Lipid fraction in diet

W = Fish wet weight (g)

Quantifying Bioaccumulation

• Aqueous Exposure:

$$BCF = C_{fish}/C_{water} = K_1/(K_2 + K_E + K_G)$$

Dietary Exposure:

$$BMF = C_{fish}/C_{diet} = E_{diet} I_{diet} / (K_2 + K_E + K_G)$$

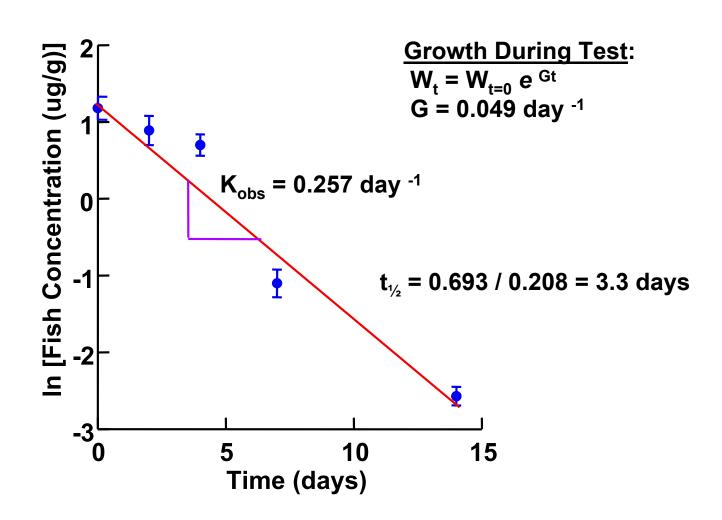
Express both parameters on lipid-normalized basis

Are Default Predictions Reliable for Hydrocarbons?

- Experimental Data Needed However, limitations of BCF Test (e.g. OECD 305 Guideline)
 - Constant aqueous concentrations often difficult to maintain
 - + biodegradable, volatile nature
 - > Analytical sensitivity may not be adequate
 - + low water solubility, biotransformation in fish
 - Uncertainty regarding "bioavailability" of aqueous concentration complicates test interpretation
 - + complexation to uneaten food / dissolved organic carbon
 - + emulsion formation above true solubility
 - Expensive / Animal use intensive

Dietary Bioaccumulation Test

- Overcomes problems associated with BCF test:
 - Allows higher / constant test exposures
 - Improves analytical detection of parent hydrocarbon
- Provides additional advantages:
 - Enables biomagnification via gut to be characterized
 - Reduces number of fish required
 - Saves considerable cost (50-75%)
- Promising alternative test for bioaccumulation assessment

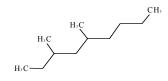

Experimental Approach

- Spike substance to commercial fish diet (14% lipid)
- Confirm dietary concentration analytically
- Feed 3% ration of spiked diet to trout (1-5 grams; 2-4% lipid) for 7 to 10 days (uptake)
- Transfer exposed fish to clean food (depuration)
- Analyze fish at different depuration times
 e.g. 0, 1, 2, 4, 7, 14 days

Data Analysis

- Use experimental depuration data to deduce:
 - Growth-corrected first-order half-life ($t_{1/2}$) i.e. $t_{1/2} = 0.693/K_{obs} = K_2 + K_E + K_B$
 - ➤Assimilation efficiency from the diet (E_{diet})
- Use toxicokinetic parameters to calculate:
 - ➢ Biomagnification Factor (BMF)
 - **▶** Bioconcentration Factor (BCF)
 - + Assume {DOC} in lab water = 2 mg/L

Example - 1,3,5 Trimethylcyclohexane Depuration

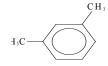

Testing Strategy

Test hydrocarbons with different structures & K_{ow}s from the classes:

▶ P = Paraffins ... Linear Alkanes

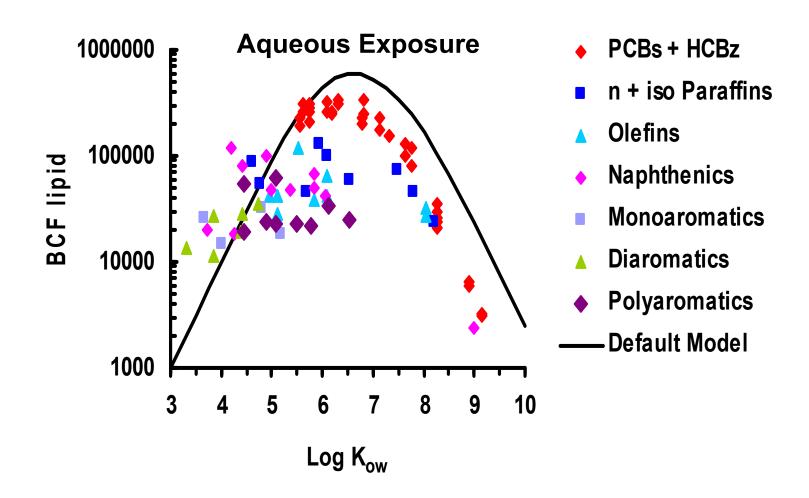
н,с____Сн,

Isoparaffins ... Branched Alkanes

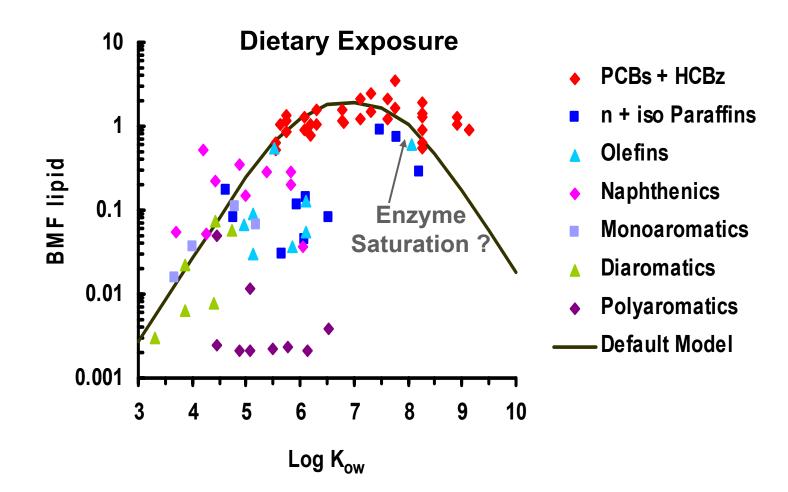


➤ O = Olefins ... Alkenes

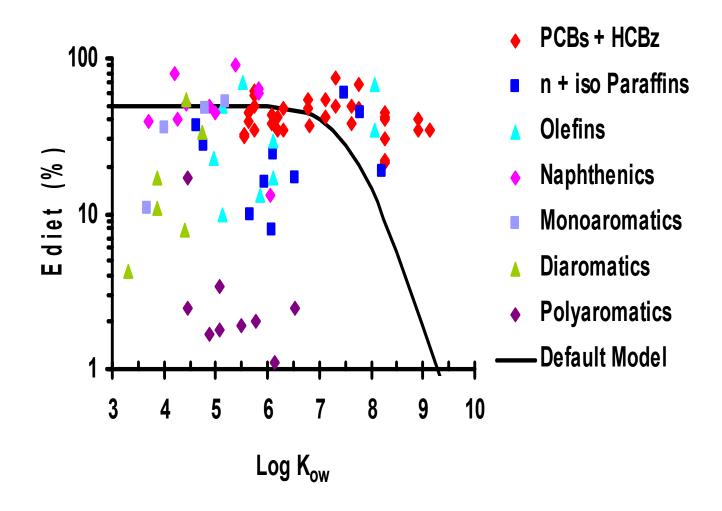
Aliphatics


➤ N = Naphthenes ... Cycloalkanes

➤ A = Aromatics ... Mono, Di & Poly


> Hexachlorobenzene ... used as a positive control

Comparison of Experimental BCF to Model


PCB Data Source: Fisk et al. (1998)

Comparison of Experimental BMF to Model

PCB Data Source: Fisk et al. (1998)

Assimilation Efficiency from the Diet

PCB Data Source: Fisk et al. (1998)

Summary

- Simple linear BCF correlations with Log K_{ow} not reliable for predicting bioaccumulation potential in fish ... Ignores
 - Aqueous "Bioavailability"
 - > Growth-Dilution
 - Biotransformation
- Process-based toxicokinetic models provide an improved mechanistic basis to predict bioaccumulation
- Toxicokinetic parameters can be derived via costeffective dietary bioaccumulation test
 - ➤ Biotransformation in fish tissue and degradation in gut can significantly reduce hydrocarbon exposure via fish pathway
 - Experimental data form basis for improved QSARs
 - Potential extrapolation to terrestrial foodchain pathway ???
 - +Correlation of Fish BMF with Cow BMF